
CHAPTER 5

WRITING MORE EFFECTIVE
AND EFFICIENT PROGRAMS

FOR-NEXT, STEP, DIM, GOSUB, RETURN, Arrays, and Nested Loops

By now you realize the power of a computer is in its capability to do many
computations over and over on different data. While a great deal of detail
and precision is required when writing a program, once written it can be used
again and again. You can see that as problems increase in size and complex-
ity, programming becomes more tedious and time consuming, especially if
you are limited only to the keywords presented in Chapters 3 and 4.
Fortunately, there are additional keywords:

FOR-NEXT—for simplifying loops

DIMENSION and subscripted variables—for processing data in
tables (arrays of one or more dimensions)

Predefine functions—for computing commonly used mathematical
functions

DEF—for defining your own functions

GOSUB and RETURN—to allow the use of subroutines

STOP—to terminate program execution anywhere in a program

SIMPLIFYING LOOPS USING FOR-NEXT

In Chapter 4, we saw that loops can be very useful when you have a series
of statements you wish to repeat a number of times. BASIC provides two
additional keywords that make some loops even easier to construct. They are
FOR-TO and NEXT.

A FOR-NEXT loop always begins with a FOR-TO statement and always
ends with a NEXT statement. The complete loop is comprised of all statements
included between the FOR-TO and the NEXT statements.

Example:

5-1

INTRODUCTION TO PROGRAMMING IN BASIC

This loop will consist of all statements, from statement number 45 through
statement number 75, and it will be executed 5 times.

The FOR-TO statement specifies how many times the loop is to be
executed. It must be the first statement in the loop. The FOR-TO statement
has a numeric variable, called the running variable, whose value changes each
time the loop is executed. The number of executions is determined
by specifying the initial and final values for the running variable. In the
example, M is the running variable; 1 is the initial value of M, and 5 is the
final value of M. Each time through the loop, M is increased by 1. When
M equals 5 the program exits the loop.

The NEXT statement consists of a statement number, followed by the
keyword, NEXT, followed by a running variable name. This running variable
must be the same as the running variable that appears in the corresponding
FOR-TO statement.

FOR-TO Statement

A typical FOR-TO

Example:

statement would look like this:

In this example, M is the running variable. The first time the loop is
executed, M will be assigned a value of 1. M will increase by 1 each time the
loop is executed, until M has reached its final value of 36. The loop will be
terminated once M has exceeded its final value of 36. The loop in the
example will be executed 36 times.

The running variable will always increase by 1, if the FOR-TO statement
contains no instructions telling it to do otherwise. However, we can
increment the running variable by some value other than 1 if we wish. This
can be done by the addition of a STEP clause to the FOR-TO statement.

Suppose we want to execute a loop 50 times, and we want the running
variable to increase by 2 after each execution. We could write it this way:

Example:

The running variable, M, would be assigned a value of 1 during the first
pass; a value of 3 during the second pass; 5 during the third pass and so on,
until the value of M was 99 during the 50th (final) pass.

The running variable does not have to be a positive integer value; it can
be a negative or decimal value. Also, the running variable can be made to
decrease with each execution of the loop. This is done by specifying a negative
value in the STEP clause. The initial, final, and STEP values assigned to the
running variable can be expressed as variables or expressions as well as
numbers.

5-2

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

Examples:

Some important points to know and remember when creating a
FOR-TO-NEXT loop are:

. The loop begins with a FOR-TO statement and ends with a
NEXT statement.

. The same running variable name must be used in the FOR-TO
and NEXT statements.

. The running variable can appear in a statement inside the
loop, but its value cannot be changed.

. The running variable will be incremented by 1 unless
otherwise specified by a STEP clause.

. If the initial and final values of the running variable are equal,
and the step size is nonzero, the loop will be executed once.

. There are three conditions under which a loop will not be
executed at all.
1. The initial and final values of the running variable are equal

and the step size is zero.
2. The final value of the running variable is less than the original

value, and the step size is positive.
3. The final value of the running variable is greater than the

original value, and the step size is negative.
. Control can be transferred out of a loop but not in. (The transfer out

can be done by using a GOTO, an ON-GOTO, or an IF-THEN
statement.)

Examine the following loop and see how it conforms to the points just listed.
Example:

5-3

INTRODUCTION TO PROGRAMMING IN BASIC

This example shows the use of the running variable (A) within
the loop (line number 650). The statement in line number 660 will
cause control to be transferred outside the loop, if the value of X
is greater than the value of Xl. Also, the running variable (A) that
appears in the NEXT statement is the same as the running variable
in the FOR-TO statement. These must be the same or the loop won’t
work. The step clause specifies that A is to be increased by .2 each
time the loop is executed. If X does not exceed Xl the loop will
be executed 9 times.

The following mortgage amortization program contains an example of
the FOR-NEXT loop structure.

Example:

The loop in this example is comprised of lines 80 through 130.
Line 80 sets the initial value of M to 1 for the first execution of
the loop. Lines 90 through 120 perform the calculations and print
the results. Once the PRINT statement in line 120 has been executed,
the NEXT statement in line 130 directs the computer to start the
loop all over again. The loop will continue until the number of times
it has been executed is equal to N (line 80). N is the number of months of
the loan.

This example shows the use of a single loop structure using the
FOR-TO. . .NEXT statements. It is also possible to have a loop within a loop.
These are called nested loops.

5-4

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

Nested Loops

In addition to the rules which apply to single loops, the following rules
apply to nested loops:

Each nested FOR-NEXT loop must begin with its own FOR-TO
statement and end with its own NEXT statement.

An outer loop and an inner (nested) loop cannot have the
same running variable.

Each inner (nested) loop must be completely embedded within an
outer loop, the loops cannot overlap.

Control can be transferred from an inner loop to a statement in an
outer loop or to a statement outside of the entire nest. However, control
cannot be transferred to a statement within a nest from a point outside
the nest.

The following example shows the structure of a nested loop.

Example:

The inner loop (statements 90 through 115) is completely embedded
within the outer loop (statements 65 through 140). Each loop begins
and ends with its own FOR-TO and NEXT statements, and each
loop has its own running variable. You will notice the running variable
of the outer loop (X) is used as the initial value for the running
variable of the inner loop (Y). This is allowed since the value of X is not
changed within the inner- loop.

By using nested loops, you are able to
tions within another set of instructions.

5-5

perform repeated sets of instruc-

INTRODUCTION TO PROGRAMMING IN BASIC

Example:

The outer loop (lines 30-1 10) will be executed 10 times, while the inner
loop (lines 60-90) will be executed 3 times for each time the outer loop is
executed. This means the inner loop is executed a total of 30 times.

WORKING WITH ARRAYS

In BASIC, we have the capability to store and reference data elements
in lists or tables. These are called arrays. An entire array is assigned one name
(e.g., D), and yet, we can refer to any element in the array by using a
subscripted variable. If D is such an array, then D(l), read “D sub one, ”

5-6

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

is the first element in array D. The value in parentheses is called a subscript.
It indicates the relative position of a given element in an array. For example,
LET D(3) = D(1) + D(2) is a BASIC statement which adds the first two
numbers of array D and puts the sum in the third element of array D.

Before elements in arrays can be used, a method is needed to define the
array. The DIM (DIMENSION) statement is used for this. It names the
array and reserves memory space. For example, DIM D(15) would reserve
space for 15 data elements with the name, D.

When subscripted variables are used, their corresponding values must be
read and stored in memory during program execution. Examine the follow-
ing example (one-dimensional array) and see how the data is stored in the
computer’s memory when the program statements are executed.

Example:

In this example, the loop will be executed five times. The variable used
to control the loop is also used as the subscript for S in the READ statement.
On the first pass through the loop, the subscript L is 1, the value of L during
the first execution of the loop. On the second pass, the subscript will be 2,
and so on, until the value of L is equal to 5.

Subscripted variables can also be used to identify elements in tables (two-
dimensional arrays) but it takes two subscripts, one to specify the row and
a second one to specify the column. For example, S(2,5) would specify the
location of the value in the second row, fifth column. Figure 5-1 is an
example of a two-dimensional array.

DIM (DIMENSION) Statement

As stated earlier a method is needed to specify the size of an array. The
BASIC programming language automatically assigns 11 elements to every

5-7

INTRODUCTION TO PROGRAMMING IN BASIC

one-dimensional array and 121 elements (11 rows and 11 columns) to every
two-dimensional array appearing in a program.

Larger arrays may be used. However, the size of each must be defined;
that is, you must specify the maximum number of elements in each. The follow-
ing example shows how a DIM statement is constructed.

Example:

This DIM statement would reserve memory space for an array named A
with 25 elements, and an array named B with 50 rows and 5 columns. On
some computers the first element in a one-dimensional array is referenced
with subscript 0, and in a two-dimensional array by subscripts, 0, 0. If that
is the case on your computer, you would set the upper limits at one less than
the number of elements you need.

When the BASIC interpreter encounters a DIM statement such as the one
above, it reserves an area in memory for arrays A and B made up of 25 and
250 elements respectively.

If an array requires less storage space than is automatically reserved by
the BASIC interpreter it need not be defined by a DIM statement. However,
by using a DIM statement only the space actually needed will be reserved.

Arrays

Some important things to remember about arrays:

DIMENSION statements are used to define arrays.

The elements in an array can be either numeric quantities or strings.
However, all of the elements in a given array must be the same type
(all numeric or all string).

An array that contains numeric elements must be named with a single
letter.

A string array is referred to with a letter followed by a dollar sign.

Elements in a one-dimensional array are referenced by the array name
followed by a subscript in parentheses, A(l).

Elements in a two-dimensional array, matrix, are referenced by the
name followed by two subscripts in parentheses; the first references
the row, the second the column, A(2,3).

Subscripts may be a numeric-constant or a numeric-variable.

Each array name in a program must be unique. However, an array
and an ordinary variable can have the same name. Duplicating array
names and variable names could be logically confusing; therefore,
it is not a recommended practice.

5-8

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

Many computers have a special set of instructions called MAT instruc-
tions for working with matrices. By using a single MAT instruction, matrices
may be defined, added, subtracted, multiplied, read, and manipulated in a
variety of ways. Any of these operations may be done with FOR-NEXT
loops; however, the MAT statement, if available, makes it easier. See
Appendix II for examples and refer to the user’s manual for your specific
computer.

Sample Problem Using Nested Loops and a Matrix

Suppose you wanted to write a program to compute your career sea pay
based on your paygrade and years of sea duty. You would need a two-
dimensional array (matrix) to store the data. Figure 5-1 shows the table of
values needed to determine sea pay.

Examine the following program and see how the matrix is
constructed. The program contains nested loops (lines 20-60) which
are used to read the values into the matrix. The outer loop sets
up the row portion, G, which represents paygrade. The inner
loop sets up the column portion, S, which represents the years
of sea duty.

Figure 5-1.—Sea-pay table.

5-9

INTRODUCTION TO PROGRAMMING IN BASIC

Example:

5-10

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

As seen in the output from this program, an E-8 with 7 years sea duty
would receive $285.00 sea pay. Try the program and see what your sea pay
would be.

The paygrade (4-9) is entered (line 100). Before it can be used as a subscript
to determine row number, we subtract 3 (line 110). This makes it correspond
to row number 1-6. Next, years of sea duty (1-12) are entered to be used as
the subscript for column number. Then the PRINT statement (line 140) prints
the corresponding value of the coordinates G and S from the matrix named P.

USING PREDEFINED FUNCTIONS

Some of the more commonly used mathematical functions have been
predefined in the BASIC language. They were presented in Chapter 2 and
are listed in Appendix I. To use them, all you have to do is specify the
function and provide an argument (the number or variable, on which the
function is to be executed).

Examples:

Calculate and Print the Square Root of 16

Calculate the Absolute Value of X–Y

If X = 10 and Y = 4, then X - Y = 6 and the absolute value is 6.

If X = 4 and Y = 10, then X-Y = –6 and the absolute value is also 6.

DEFINING YOUR OWN FUNCTIONS

In addition to the predefine functions, BASIC allows you to define your
own functions within a program. The statement for defining functions is the
DEF (DEFINE) statement.

The DEF statement consists of a statement number, the keyword DEF
and the function definition. The function definition consists of the function
name, followed by an equal sign, followed by a constant, variable, or
expression. If the function requires an argument, then it must appear
immediately after the function name, enclosed in parentheses. The following
example shows how a function to convert Fahrenheit to Celsius could be
defined.

Example:

Both numeric and string functions may be defined with the DEF state-
ment. Numeric functions return numeric values and string functions return
string values. Numeric function names must consist of three letters, the first
two must be FN, followed by any single letter of the alphabet (A-Z). Therefore,

5-11

INTRODUCTION TO PROGRAMMING IN BASIC

as many as 26 separate numeric functions can be defined in a single program
(FNA, FNB,...FNZ).

String functions must consist of three letters followed by a dollar sign. Like
numeric functions, the first two letters must be FN. Up to 26 separate string
functions may be defined in a single program (FNA$, FNB$,...FNZ$). Numeric
and string functions having the same three letters (FNA and FNA$) are con-
sidered as two different functions and may appear in the same program.

Some important things to remember about user defined functions are:
A function definition statement must have a lower numbered line
than that of the first reference to the function.
The expression in a DEF statement is evaluated only when the defined
function is referenced.
If the execution of a program reaches a line containing a DEF statement,
it proceeds to the next line with no other effect.
A function definition can reference other defined functions, but not
itself.
A function may be defined only once in a program.
Predefine functions may be used in arguments of user defined
functions.
Subscripted variables are not permitted as arguments in a function
definition.

The following example shows a user defined function to calculate the area
of a circle.

Example:

You can define your own functions, include them, and use them in your
program. The following program shows the use of this-function in a program
to compute the areas of any number of circles.

Example:

5-12

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

The function to compute the area of a circle is defined in line 10. The
PRINT statement, line 90, references the defined function to print the area
of the circle. The variable name (R) used in the DEF statement is not the same
as the one (Y) used in the PRINT statement where the function is referenced,
rather it corresponds to the variable name used in the INPUT statement, line
80 ✎

CONSTRUCTING AND USING SUBROUTINES

Like functions, subroutines are designed so they can be used over
and over within a program, or so they can be inserted easily into other
programs.

A subroutine is defined as a small program within another program. It
does not have to be given a name or begin with a particular keyword.
Subroutines can be used when sets of instructions are to be performed several

5-13

INTRODUCTION TO PROGRAMMING IN BASIC

times in one or more programs. They can also be useful when more
than one programmer is working on a program. Each programmer
can be assigned a portion of the program to write, and that portion
can be written as a subroutine. When all portions of the program
have been written, they can be put together and referenced as
subroutines in the main program. This reduces the possibility of
statements written by one programmer conflicting with the statements
written by another programmer.

To execute a subroutine, you must transfer control to the subroutine by
using the keyword, GOSUB. Once executed, the subroutine transfers control
back to the statement immediately following the GOSUB statement.

GOSUB and RETURN Statements

The GOSUB statement is used to transfer control to a subroutine. It is
made up of a statement number followed by the keyword GOSUB and the
number of the first statement in the subroutine.

The RETURN statement is used to transfer control back to
the main program. It must be the last statement in the sub-
routine. The RETURN statement consists of a statement number
followed by the keyword RETURN. When the RETURN statement is
executed, it transfers control back to the main program to the statement
immediately following the GOSUB statement. The structure is as
follows:

Line 30 transfers control to line 200, the first statement of the subroutine.
Line 270, the last statement of the subroutine, returns control to line 40, the
line immediately following the GOSUB.

The following example shows the use of the GOSUB and RETURN
statements in transferring control to a subroutine and returning control back
to the main program.

5-14

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

Example:

5-15

INTRODUCTION TO PROGRAMMING IN BASIC

The GOSUB statement in line 70 transfers control to the subroutine, line
160, which prints a prompt to the user. At this point, the subroutine gives
the user the option, either to continue running the program or to terminate
it. After a string value is entered at line 180, the RETURN statement, line
190 returns control to the main program at line 80. This line tests the value
of the string variable, X$. If the value equals Y, control is transferred to line
30; if the value is equal to N, the program will STOP.

STOP Statement

The STOP statement, line 90, terminates execution of the program.
Although the STOP statement terminates execution of the program, it does
not replace the END statement. Remember, the END statement has two
functions: to terminate execution of the program, and to indicate there are
no more instructions for the BASIC interpreter to translate. Therefore you
must include an END statement in every program, regardless of how many
STOP statements you use. STOP statements may appear anywhere you need
them in a program, and you can use as many as you want.

Summary

Constructing loops is made easier by using the FOR-NEXT loop
structure. A FOR-NEXT loop always begins with a FOR-TO statement and
ends with a NEXT statement. A numeric variable, called a running variable
is used to control the number of times a loop is executed. The running variable
used in the NEXT statement must be the same as the one used in the
FOR-TO statement. The value of the running variable is incremented by one
each time the loop is executed, unless a STEP clause is used to alter this.
Control can be transferred out of a loop but not into one.

A loop may have another loop inside it. This is called a nested loop. Each
nested loop must be completely embedded within the outer loop. They
cannot overlap. Each nested loop must begin with its own FOR-TO
statement and end with its own NEXT statement. Control cannot be transferred
into a nested loop from a point outside the nest.

When working with one- or two-dimensional arrays you may reference
any element in them by using a subscripted variable. The DIM (DIMENSION)
statement is used to define the size of an array. It reserves space in the
computer’s memory for the specified number of elements.

Each array must be assigned a unique name, using either a numeric-variable
name or a string-variable name. An array may contain either numeric or string
data; however, all the elements in a given array must be of the same type (all
numeric or all string).

Some of the more common mathematical functions have been predefine
by the BASIC language; however, there are times when you may need to define
your own. This can be done by using the DEF (DEFINE) statement.

A subroutine is a small program inside a larger program. It is useful when
sets of instructions are to be performed several times in one or more
programs, or when several programmers are working on the same program.
A subroutine is executed by transferring control to the subroutine using a
GOSUB statement with the statement number of the 1st statement in the
subroutine. It is terminated by the keyword RETURN. When a RETURN

5-16

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

statement is executed, control is transferred from the subroutine back to the
main program to the statement immediately following the GOSUB statement.

Execution of a program may be terminated anywhere in a program by
the use of STOP statements.

5-17

CHAPTER 5

EXERCISES

1.

2.

3.

4.

Using a FOR-NEXT loop, write a program to print all the even
numbers beginning with 20 and ending with 40.

Write a program that will compute the amount accumulated if
you start with a penny and double it every day for 30 days.
Print the total for each day.

Write a program that will read the following names into an array,
then list them in reverse order. Carol, Chuck, Fred, Jane, John.

Write a program, including a DIM statement, to construct a matrix
for 9 golfers with 4 games each. Include the capability to select
and print a specific golfer number and a specific game. The scores
for the players are:

5. Write a program containing a user defined function to compute
the sale price for any piece of merchandise when given the original
price; use 20% as the rate of discount.

5-18

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

6. Write a program containing a subroutine to calculate average miles
per gallon.

5-19

CHAPTER 5

EXERCISE SOLUTIONS

The following programs present possible solutions to the exercises.

1. 10 FOR X = 20 TO 40 STEP 2

20 PRINT X

30 NEXT X

40 END

RUN

20

22

24

26

28

30

32

34

36

38

40

5-20

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

2. 10 LET Y = .01
20 FOR X = 1 TO 30
30 LET Y = Y*2
35 PRINT Y
40 NEXT X
50 END

RUN

2.00000000E-02
4.00000000E-02 NOTE: Small numbers are represented

8.00000000E-02 by E notation.

.16

.32

.64
1.28
2.56
5.12
10.24
20.48
40.96
81.92
163.84
327.68
655.36
1310.72
2621.44
5242.88
10485.76
20971.52
41943.04
83886.08
167772.16
335544.32
671088.64
1342177.28
2684354.56
5368709.12
10737418.24

5-21

INTRODUCTION TO PROGRAMMING IN BASIC

3. 5 DIM A$(5)

10 DATA “CAROL”

20 DATA “CHUCK”

30 DATA “FRED”

40

50

60

70

80

90

100

110

120

DATA “JANE”

DATA “JOHN”

FOR X = 1 TO 5

READ A$(X)

NEXT X

FOR Y = 5 TO 1 STEP –1

PRINT A$(Y)

NEXT Y

END

RUN

JOHN

JANE

FRED

CHUCK

CAROL

4. 10 DIM G(9,4)

20 FOR P = 1 TO 9

30 FOR S = 1 TO 4

40 READ G(P,S)

50 NEXT S

60 NEXT P

5-22

Chapter 5—WRITING MORE EFFECTIVE AND EFFICIENT PROGRAMS

70

80

90

100

110

120

130

140

150

999

PRINT “TOURNAMENT GOLF SCORES”

PRINT “ENTER PLAYER NUMBER (l-9)”

INPUT P

PRINT “ENTER GAME NUMBER (1-4)”

INPUT S

PRINT “PLAYER #”;P;“SCORE FOR GAME #”;S;“IS”;G(P,S)

DATA 69,72,70,75,73,72,74,70,71,75,69,73

DATA 70,74,72,71,69,68,70,72,75,77,73,70

DATA 68,66,70,72,70,73,71,69,76,71,74,72

END

RUN

TOURNAMENT GOLF SCORES

ENTER PLAYER NUMBER (1-9)

?6

ENTER GAME NUMBER (1-4)

?2

PLAYER #6 SCORE FOR GAME #2 IS 77

5. 10 DEF FNP(C) = C – (.20*C)

20 PRINT “ENTER ORIGINAL PRICE”

30 INPUT Z

35 IF Z = 0 THEN 60

40 PRINT “SALE PRICE IS $ ”;FNP(Z)

50 GOTO 20

6 0 E N D

RUN

ENTER ORIGINAL PRICE

?15

SALE PRICE IS $ 12

5-23

INTRODUCTION TO PROGRAMMING IN BASIC

6. 10 PRINT “ENTER MILES AND GALLONS”

20 INPUT M,G

30 GOSUB 60

40 PRINT “AVERAGE MILES PER GALLON IS”;A

50 STOP

60 LET A = M/G

70 RETURN

99 END

RUN

ENTER MILES AND GALLONS

?250,10

AVERAGE MILES PER GALLON IS 25

5-24

	ERRATA #1
	CONTENTS
	CHAPTERS

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7

	PAGES

	PAGE 1-1
	PAGE 1-3
	PAGE 1-4
	PAGE 1-5
	PAGE 1-6
	PAGE 1-7
	PAGE 1-8
	PAGE 1-9
	PAGE 1-10
	PAGE 1-11
	PAGE 1-12
	PAGE 1-13
	PAGE 1-14
	PAGE 1-15
	PAGE 1-16
	PAGE 1-19
	PAGE 2-1
	PAGE 2-2
	PAGE 2-3
	PAGE 2-4
	PAGE 2-5
	PAGE 2-6
	PAGE 2-7
	PAGE 2-8
	PAGE 2-11
	PAGE 2-12
	PAGE 2-14
	PAGE 3-1
	PAGE 3-2
	PAGE 3-5
	PAGE 3-7
	PAGE 3-8
	PAGE 3-10
	PAGE 3-11
	PAGE 3-12
	PAGE 3-13
	PAGE 3-14
	PAGE 3-15
	PAGE 3-19
	PAGE 4-1
	PAGE 4-3
	PAGE 4-4
	PAGE 4-6
	PAGE 4-7
	PAGE 4-8
	PAGE 4-9
	PAGE 4-13
	PAGE 4-14
	PAGE 4-17
	PAGE 4-21
	PAGE 5-1
	PAGE 5-2
	PAGE 5-3
	PAGE 5-4
	PAGE 5-5
	PAGE 5-6
	PAGE 5-7
	PAGE 5-8
	PAGE 5-9
	PAGE 5-11
	PAGE 5-12
	PAGE 5-13
	PAGE 5-14
	PAGE 5-16
	PAGE 5-24
	PAGE 6-1
	PAGE 6-4
	PAGE 6-5
	PAGE 6-7
	PAGE 6-14
	PAGE 7-1
	PAGE 7-2
	PAGE 7-3
	PAGE 7-4
	PAGE 7-5
	PAGE 7-6
	PAGE 7-7
	PAGE 7-13
	PAGE AI-1
	PAGE AI-2
	PAGE AII-1
	PAGE AII-2
	PAGE AIII-1
	PAGE AIII-2

	FIGURES

	FIGURE 1-1
	FIGURE 1-2
	FIGURE 1-3
	FIGURE 1-4
	FIGURE 1-5
	FIGURE 1-6
	FIGURE 4-1
	FIGURE 4-2
	FIGURE 5-1
	FIGURE 7-1
	FIGURE 7-2

	TABLES

	TABLE 2-1
	TABLE 2-2
	TABLE 2-3
	TABLE 2-4
	TABLE 3-1

	APPENDIX

	APPENDIX I
	APPENDIX II

	INDEX
	NRTC
	ASSIGNMENT 1
	ASSIGNMENT 2

